
Select and configure the best data 
acquisition system for your application

Setting up a test system for data

acquisition or electronic functional

test can be a chore. But if you

choose the right hardware and 

software for your application, you

can alleviate many common

headaches before you even begin

assembling, configuring and 

programming your system. We 

have compiled a collection of our

most popular application notes and

demos to help you select, configure

and make the most out of using

your data acquisition system.

• Compare data acquisition solutions 
from Agilent, Keithley, NI and Racal

This comprehensive and insightful 
selection guide gives on overview of
switch/measure system types used in
functional test and data acquisition 
environments and discusses factors
affecting ease of software development
for switch/measure solutions. In addition,
it compares the most popular hardware
from the industry’s most respected 
companies. See the summary that 
begins on page 2. 

• Learn how to select the best 
temperature transducer for your 
application

Making the best temperature measure-
ments starts with selecting the right 
temperature sensor for your application.
This popular application note explores 
the advantages and disadvantages of a
variety of sensors. See the summary that
begins on page 6.

• Take a tour of our newest data 
acquisition solution

The Agilent 34980A is an eight-slot 
mainframe that includes an optional 
built-in 6-? digit DMM. Choose from 19
optional plug-in modules that offer a
broad range of functionality that includes
DC to 20 GHz switching, counter/totalizer,
digital I/O with pattern capabilities, and
D/A converters – Experience the 34980A
through a flash demo. 

http://wireless.agilent.com/flash/abe/


This application note gives an
overview of switch/measure system
types used in functional test and 
data acquisition environments and
discusses factors affecting ease of
software development for switch/
measure solutions. It also reports
results of benchmark tests of switch/
measure time for the Keithley 27xx
DMM/data acquisition system; 
Racal 1256 switching system; 
Agilent 34970A and Agilent 34980A
switch/measure units; Agilent 3499A
switch/control mainframe combined
with an Agilent 34401A digital multi-
meter; Agilent E1411B/E1476A VXI
combination; and a National
Instruments (NI) PXI-4070/SCXI-1128
PXI combination. The paper also 
discusses cost of ownership and ease
of use issues for an actual system
constructed from the tested hardware.
It concludes with code examples in the
Microsoft® Visual Studio®.NET envi-
ronment for each of the instruments.

Switch/measure system types
Almost all test systems include a 
digital multimeter (DMM) and a bank
of relays (switches), but the switch/
measure function can be implemented
in three different ways:

• Discrete instruments with cable
interconnects

• VXI or PXI or PXI-hybrid mainframes 

• Dedicated instruments with 
proprietary backplanes containing a
DMM and a variety of switch cards

The type you choose will be heavily
influenced by whether you plan to use
the system for data acquisition (DAQ)
or electronic functional test (ETF).
For DAQ, you take numerous readings
to characterize your device’s perfor-
mance. For EFT, you apply stimuli 
to a device, monitor the outputs for
expected responses, and compare
them to a set of limits.

The throughput you can achieve with
the same hardware differs greatly in
these two environments. Execution
speed can be very high in DAQ mode
— on the order of 1,000 readings/sec,
depending on the measurement 
resolution and switching speed. In
such systems, high-speed backplanes
can improve throughput, since you
need to transfer a lot of data. VXI and
PXI systems shine here. An EFT system
makes fewer readings and repeats
them many times. Execution speeds
are more like 100- 500 readings per
second. A high-speed backplane does
not help much for EFT applications,
which makes the lower-cost dedicated
switch/measure solutions a better
choice.

Ease of programming
For programming instruments in 
test systems, engineers commonly 
use several application development 
environments (ADEs) that encompass
both graphical and textual program-
ming languages. The three most 
commonly used are VEE Pro,
LabVIEW and Visual Studio 6.0, with
Visual Studio.NET making gains. In
the Visual Studio.NET environment,
Agilent’s T&M Programmers Toolkit
and NI’s Measurement Studio both
make using instruments easier.

Using drivers vs. SCPI commands

If you are using standalone (rack-
and-stack) test and measurements
instruments in your system, you 
typically will send ASCII commands
via a GPIB, USB or LAN interface using
either SCPI (Standard Commands for
Programmable Instruments) or soft-
ware drivers. Cardcage-based systems
such as VXI and PXI are most often
controlled via data registers rather
than ASCII commands, and you 
typically use drivers provided by 
the manufacturer. 

The primary advantages of using
drivers where there’s a choice of 
SCPI or drivers:

1. The program is more transportable
and more readable by other 
programmers 

2. Built-in help during development
via IntelliSense (VB6 and .NET)

3. Built-in state caching, if implement-
ed, can improve execution speed 

4. Instrument quirks may have been
taken into account for you, reducing
the chance that you will need 
support

2

A Comparison of Leading Switch/Measure Solutions
Application Note Summary



The main disadvantage of using
drivers is that they may not include
all possible functionality. Another is
that if the driver does not function
correctly, it can be difficult to debug.
For a detailed explanation of interface
drivers, VISA, VXIplug&play, IVI,
LabVIEW and VEE Pro drivers, 
see the full application note, 
“A Comparison of Leading
Switch/Measure Solutions.”

Do drivers affect execution speed?

Experiments with the hardware used
in our benchmark tests show that
VXIplug&play and IVI drivers can be
as fast as SCPI (via VISA) in modern
computers. Although there are some
caveats to this, there is no reason to
avoid drivers solely due to concerns
about execution speed.

Effects of command sequencing 
and state caching

Whether you use SCPI or drivers, when
you are programming instruments
you need to pay careful attention to
command sequencing. If you use SCPI,
you will find that some commands
cause other instrument states to
change. A driver may take care of this
for you, but it will have to send many
query commands to the instrument to
figure out what state it is in or send
extra commands to the instrument to
make sure it is in a given state. These
steps can add execution time. You
can solve the problem by using state
caching, which is commonly imple-
mented in IVI drivers. A state-
caching driver keeps track of the 
current state of the instrument, and 
it saves command transfer time and
command parsing time.

Benchmark tests
To maximize validity of our benchmark
test results, we used VB.NET as a
common development environment
and ran tests on all instruments in
both DAQ mode (scanned voltage
readings) and EFT mode (single 
reading with associated switching).

We also wanted to show that NI,
Keithley, Racal and Agilent hardware
could work together in a real test 
system, so we constructed a test 
system using hardware from these
companies. We used a variety of
interfaces, including LAN for the
Agilent 34980A and the Keithley 2701
(via a LAN hub); MXI-3 to connect 
the PC to the PXI cage; FireWire to
connect the PC to the VXI cage; and
GPIB, through both a dedicated PCI
GPIB interface card and an Agilent
82357A USB/GPIB converter. See the
system diagram (Figure 1) in the full
application note.

Benchmark timing results
For details about the hardware, soft-
ware and drivers we used for the test,
see the full application note. We
defined EFT time as the time to open
and close one relay and trigger and
read one DMM DCV reading on the 10-V
range with a resolution of 1 mV (4.5
digits). Reported time is an average 
of 20 such measurements. We defined
DAQ time as the time per reading to
scan a 20-channel list, taking a 
measurement as each relay closes.
See Table 1.

As you can see, DAQ mode produces
much faster execution time, sometimes
by as much as an order of magnitude.
Also, there are wide variations in 
execution times; Keithley’s use of 
fast reed relays didn’t help much, for
example, since the instrument was so
slow at taking readings. PXI was
fastest, but its performance, which was
only measured using FET switches,
was comparable to the 34980A FET
switches. 

3

1 It is not possible to do a “scanned” measurement
using a matrix. This is not the typical use model for 
a matrix, which is used most often for EFT testing.

2 The Racal 1256 took 2 seconds to process the
“define scan list” command. That is why its data
acquisition time was so long. Without that, the 
execution time would have been about 13 ms. 
Of that, 10 ms was the “trigger delay” parameter 
that was used, since the advance trigger output did
not appear to work. If that delay were removed, the
execution time would have been about 3 ms, which
is consistent with normal DAQ modes. 

3 The VXI SCPI numbers were gathered with an
E1406A GPIB command module.

4 The SCXI-1128 was unable to generate a trigger back
to the DMM, so a full handshake is not possible.
Thus the SCXI measurement is a synchronous type,
in which the DMM takes 20 readings using a sample
interval, and its Measurement Complete signal is
used to advance the scanning to the subsequent
channel. 

Table 1. Benchmark test results

Driver SCPI
EFT DAQ EFT DAQ

Agilent 34980A
70-ch armature mux (34922A) 16.9 ms 10.4 ms 15.1 ms 10.1 ms

Dual 4x8 road matrix (34933A) 9.6 ms 1 8.4 ms 1

40/80-ch FET mux (34925A) 10.0 ms 2.7 ms 7.9 ms 2.7 ms

Keithley 2701-7703
32-ch diff. reed mux 440 ms 68 ms n/a n/a

Racal 1256-138A/E1411B
8 1x8 2-wire armature mux 4.13 ms 113 ms2 n/a n/a

Agilent 34970A/34901A
20-ch armature mux (34922A) 52.2 ms 22.8 ms 70.0 ms 252 ms

Agilent 3499A-N2266A/34401A
20-ch armature mux (34922A) 29.5 ms 21.4 ms 35.3 ms 27.1 ms

Agilent VXI E1476A/E1411B
64-ch 3-wire armature mux 30.1 ms 11.9 ms 46.6 ms3 2.94 ms3

NI SCXI-1128/PXI-4070

Notes: 

http://cp.literature.agilent.com/litweb/pdf/5989-1929EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5989-1929EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5989-1929EN.pdf


Cost of ownership
Overall, the Agilent 34980A and
34970A cost the least per slot. With
PXI and VXI systems you need to pay
for an expensive cardcage that was
meant for high-speed instrumentation.
You must also pay for an interface
card on both the computer and the
cardcage. This creates an overhead
that must be added to the cost of
every slot used. In addition, it can
take considerably longer to implement
a solution using discrete cards than
by using a switch/measure box. The
full application note includes a table
showing prices of several switch/
measure solutions 

Summary of ease-of-use issues
We encountered numerous problems
over the course of the 3-week 
evaluation period, which are 
summarized here:

1. Keithley firmware update required. 
If the program aborts or is ended
without executing a “close” on the
Keithley 2701, that instrument 
cannot be used again until power 
is cycled. We downloaded firmware
revision A06 from the Web and
reflashed the unit to fix the problem.

2. Unusual behavior. The Keithley 2701
was resetting the DMM aperture
time to SLOW (5 PLC) whenever a
ROUT:MULT:CLOS (Close multiple
relays) command was sent. We had
to add a command to reset the
aperture time to .01 NPLC. 

3. NI-VISA setup changes required. 
If you use NI VISA, you must also run
MAX (Measurement Automation
Explorer) and enable the “Passport
to Tulip” interface driver or none of
the Agilent VXI/GPIB instruments
will be recognized. However, with
NI Measurement Studio installed,
this interface could not be used
because the NI Passport interface
driver calls AgVisa32.dll and it
caused an exception upon exit. 

4. NI IVI-compliance problems. 
Agilent’s Driver Wrapper Wizard can
only wrap IVI-C and VXIplug&play
drivers that are properly installed
according the IVI Foundation specs.
NI-DMM and possibly other NI IVI-C
drivers did not install correctly
unless the “LabWindows/CVI 
examples” box was checked during
the installation step. At the time of
this evaluation, NI did not provide
.NET compatibility for its instru-
ments, but it did offer .NET-wrapped
code that can be downloaded from
its Web site and manually attached
to a program. We did this for the
NI-DMM driver, but we encountered
namespace conflicts.

5. Insufficient documentation. 
NI’s examples for use of its PXI-4070
DMM were in VB6 and VC++ and
LabVIEW. NI’s examples for DAQmx
switches in .NET do not include
hardware triggers, only software
triggers. The hardware triggers
require use of the backplane trigger
buses, but the parameters that use
these require strings, and there are
no examples of usable strings. The
IntelliSense help did not work, so
we manually retrieved the intended
help. However, when we tried using
the names that it gave for trigger
buses in the code they required, 
we could find none that worked. 
A LabVIEW example revealed that
new path-based naming conventions
were required. However, none of
the names in the LabVIEW example
worked. We initiated another 
support session and discovered that
the SCXI-1128 does not support
handshaking, only synchronous
mode (unidirectional triggering). 

6. PC shutdown required for swapping
cards in PXI. When you move a card
in a PXI cardcage, you must cycle
power, but you can’t do it with the
PC power on since the PXI back-
plane is an extension of the PCI bus
in the computer. A time-consuming
PC reboot is required. 

7. Version conflicts. We encountered
many version conflicts. For 
example, while troubleshooting
SCXI switching problems, NI-DAQ
7.1 was installed on a Measurement
Studio 7.0 installation. This caused
numerous problems that were only
solved by uninstalling all NI software
and reinstalling it, which took the
better part of a day.

4



8. How can Agilent and NI hardware be
controlled from one program?
NI MAX can find devices on all 
NI interfaces, but cannot directly 
control Agilent interfaces, such as
the FireWire interface to VXI, USB/
GPIB converter or the PCI GPIB
card. Agilent Instrument Explorer
cannot currently find PXI devices.
For a test system that needs to
communicate with devices from
both vendors, the solution was to
install Agilent I/O libraries in “side-
by-side” mode (described in the I/O
Libraries Help file) and enable the
Passport-Tulip interface driver in
NI MAX. This causes VISA calls to
those interfaces to be routed from
NI VISA to Agilent VISA, which
then controls the relevant Agilent
interfaces while still allowing NI
interfaces such as MXI-3 to work
directly through NI VISA and
Passport drivers.

Code examples
The full application note includes
programming requirements in the
Visual Basic.NET environment for 
a simple EFT (close/measure/open)
and DAQ (scanned) measurement
using the DMM in DC volts on the 
10-V range, with a 20-channel mux.

Looking at the code, we reached
these conclusions:

1. Switch/measure units with internal
DMMs take a lot of the work out of
DAQ measurements, because the
triggering is done for you. It took
only a few minutes to create working
code with these instruments. It
took 2 weeks to get the PXI/SCXI
measurement to work, largely
because of difficulty with triggering
requirements.

2. SCPI strings can be concatenated,
making long strings. This saves a
little execution time because there
is no extra overhead in multiple
function calls. However, if it is not
necessary to send the string in the
first place, the command parsing
time in a slow instrument can easily
dwarf the function call execution
time. If high throughput is a
requirement in your application,
consider using state-caching
drivers instead of SCPI.

3. IVI-C (with .NET wrappers), IVI-COM
and VXIplug&play drivers are all
very similar in usage in the .NET
environment. All provide various
degrees of IntelliSense help. We
found that IVI-COM help is much
more useful than the other two. The
PXI/SCXI help was not adequate,
requiring frequent reference to the
on-line manuals and several e-mail
support sessions with NI. 

5

http://cp.literature.agilent.com/litweb/pdf/5989-1929EN.pdf


Introduction
Understanding the advantages and
disadvantages of the various
approaches to measuring temperature
will help you get better results when
you are collecting temperature data
with a data acquisition system.
Choosing the right temperature 
transducers and using them correctly
can help you avoid problems and get
results you can count on. This appli-
cation note provides an overview of
the four most common types of 
temperature transducers used in data
acquisition systems and discusses the
advantages and disadvantages of each
approach. 

Transducer types
The four most common types of 
transducers used in data acquisition
systems are resistance temperature
detectors (RTDs), thermistors, IC 
sensors and thermocouples. Each of
them works best in certain measure-
ment situations, so it is important to
know when to use which type. Factors
to consider include performance, 
useful range, cost and convenience.
Table 2 summarizes the advantages
and disadvantages of each type.

For a more complete description 
of each of the transducer types, see
the full application note. The full 
application note also includes a
detailed look at how thermocouples
work to help you overcome some of
their inherent drawbacks.

6

Table 2.

RTD Thermistor IC Sensor Thermocouple
Measurement type Absolute Absolute Absolute Relative

Advantages • Most stable • High sensitivity • Most linear • Self-powered
• Most accurate • Fast • Highest output • Rugged
• More linear than • Two-wire • Inexpensive • Inexpensive

thermocouples measurement • Wide variety of 
physical forms

• Wide temperature
range

Disadvantages • Expensive • Nonlinear • Limited to 250°C • Nonlinear
• Slow • LImited • Power supply • Low voltage
• Current source temperature required • Reference

required • range • Slow required
• Small resistance • Fragile • Self-heating • Least stable

change • Current source • Limited • Least sensitive
• 4-wire required configurations

measurement • Self-heating • Large mass
• Self-heating

Selecting temperature transducers for data acquisition systems
Application note summary

http://cp.literature.agilent.com/litweb/pdf/5988-7505EN.pdf


Improving transducer accuracy
With all four types of temperature
transducers, reducing noise will help
you improve the accuracy of your
measurements. Reducing noise is
especially critical when you are using

thermocouples, since electrical noise
affects thermocouple measurements
most dramatically.

Noise typically comes from one of
three sources and each type of noise
has a unique solution: 

Conclusion
It is not difficult to make accurate and
reliable temperature measurements
with a data acquisition system if you
choose the right sensor for your
application. When you select your
sensor, consider transducer cost, 
temperature range, accuracy, rugged-
ness, sensor output, thermal settling
times and error modes, such as self-
heating. Also, pay careful attention to
the instrument system you choose. The
correct sensor is useless if the data
acquisition system cannot measure
its output accurately and repeatably.

Related Agilent Literature 
• 34970A Data Sheet 5965-5290EN
• 34980A Data Sheet 5989-1437EN

7

Noise type Cause Solution

Common mode noise Ground loops. Thermocouples are Select a data acquisition system 
very susceptible to ground loops, with high impedance to ground, 
as their metal junction may be often specified as common mode 
directly attached to a machine rejection. You also can insert 
or component that has a higher electrical insulation between the 
potential than the data logger. 
through both the high and low 
leads, through the data logger 
and back to the source via ground. 

Normal mode noise Magnetic fields creating a current Shorten leads, use twisted pair wiring, 
in the measurement loop. Normal avoid running measurement wires 
mode noise can occur when a near high-current sources
thermocouple wire is run near
high-current wires or machinery 

Electrostatic noise Rotating machinery Use a shielded measurement wire



www.agilent.com/find/emailupdates
Get the latest information on the products and 
applications you select.

www.agilent.com/find/agilentdirect
Quickly choose and use your test equipment solutions
with confidence.

Agilent Open Connectivity
Agilent Open simplifies the process of connecting 
and programming test systems to help engineers
design, validate and manufacture electronic 
products. Agilent combines a broad range 
of system-ready instruments, open industry 
software, PC-standard I/O and global support 
to accelerate test system development. For more 
information, see: 

www.Agilent.com/find/Open.

Agilent Direct

By internet, phone, or fax, get assistance with
all your test & measurement needs

Online assistance: 
www.agilent.com/find/assist

Phone or Fax

United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 800 746 4866

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) (31 20) 547 2111
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) (650) 752 5000

Taiwan:
(tel) 0800 047 866 
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6836 0252
(e-mail) tm_asia@agilent.com

Product specifications and descriptions in this 
document subject to change without notice.

Microsoft and Visual Studio are US registered 
trademarks of Microsoft Corp.

Pentium is a US registered trademark of Intel
Corporation.

© Agilent Technologies, Inc. 2005
Printed in the USA July 29, 2005

www.agilent.com


